Further characterization of ferric—phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley

نویسندگان

  • Daisei Ueno
  • Naoki Yamaji
  • Jian Feng Ma
چکیده

Roots of some gramineous plants secrete phytosiderophores in response to iron deficiency and take up Fe as a ferric-phytosiderophore complex through the transporter YS1 (Yellow Stripe 1). Here, this transporter in maize (ZmYS1) and barley (HvYS1) was further characterized and compared in terms of expression pattern, diurnal change, and tissue-type specificity of localization. The expression of HvYS1 was specifically induced by Fe deficiency only in barley roots, and increased with the progress of Fe deficiency, whereas ZmYS1 was expressed in maize in the leaf blades and sheaths, crown, and seminal roots, but not in the hypocotyl. HvYS1 expression was not induced by any other metal deficiency. Furthermore, in maize leaf blades, the expression was higher in the young leaf blades showing severe chlorosis than in the old leaf blades showing no chlorosis. The expression of HvYS1 showed a distinct diurnal rhythm, reaching a maximum before the onset of phytosiderophore secretion. In contrast, ZmYS1 did not show such a rhythm in expression. Immunostaining showed that ZmYS1 was localized in the epidermal cells of both crown and lateral roots, with a polar localization at the distal side of the epidermal cells. In maize leaves, ZmYS1 was localized in mesophyll cells, but not epidermal cells. These differences in gene expression pattern and tissue-type specificity of localization suggest that HvYS1 is only involved in primary Fe acquisition by barley roots, whereas ZmYS1 is involved in both primary Fe acquisition and intracellular transport of iron and other metals in maize.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)‐phytosiderophore transporters

Hordeum vulgare L. yellow stripe 1 (HvYS1) is a selective transporter of Fe(III)-phytosiderophores in barley that is responsible for iron acquisition from the soil. In contrast, maize Zea mays, yellow stripe 1 (ZmYS1) possesses broad substrate specificity. In this study, a quantitative evaluation of the transport activities of HvYS1 and ZmYS1 chimera proteins revealed that the seventh extracell...

متن کامل

A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal-phytosiderophore complexes.

Recent advances in our understanding of how graminaceous plants take up insoluble forms of iron from the rhizosphere and mobilize them in plant tissues are primarily based on the identification of various transporters that are specific to metal-phytosiderophore (PS) complexes containing mugineic acid and deoxymugineic acid. Barley (Hordeum vulgare L.) yellow stripe 1 (HvYS1) is a metal-PS trans...

متن کامل

The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport

Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporte...

متن کامل

Iron acquisition by phytosiderophores contributes to cadmium tolerance.

Based on the ability of phytosiderophores to chelate other heavy metals besides iron (Fe), phytosiderophores were suggested to prevent graminaceous plants from cadmium (Cd) toxicity. To assess interactions between Cd and phytosiderophore-mediated Fe acquisition, maize (Zea mays) plants were grown hydroponically under limiting Fe supply. Exposure to Cd decreased uptake rates of 59Fe(III)-phytosi...

متن کامل

Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency

Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a don...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009